--- title: "An Aplication to SAE HB ME under Beta Distribution On Sample Data" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{An Aplication to SAE HB ME under Beta Distribution On Sample Data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## case 1 : Auxiliary variables only contains variable with error in aux variable ## Load Package and Load Data Set ```{r setup} library(saeHB.ME.beta) data("dataHBMEbeta") ``` ## Fitting HB Model ```{r} example <- meHBbeta(Y~x1+x2, var.x = c("v.x1","v.x2"), iter.update = 3, iter.mcmc = 10000, thin = 3, burn.in = 1000, data = dataHBMEbeta) ``` ## Ekstract Mean Estimation ### Small Area Mean Estimation ```{r} example$Est ``` ### Coefficient Estimation ```{r} example$coefficient ``` ### Random Effect Variance Estimation ```{r} example$refvar ``` ### Extract MSE ```{r} MSE_HBMEbeta=example$Est$sd^2 ``` ### Extract RSE ```{r} RSE_HBMEbeta=sqrt(MSE_HBMEbeta)/example$Est$mean*100 ``` ## You can compare with Direct Estimation ### Extract Direct Estimation ```{r} Y_direct=dataHBMEbeta[,1] MSE_direct=dataHBMEbeta[,6] RSE_direct=sqrt(MSE_direct)/Y_direct*100 ``` ### Comparing Y ```{r} Y_HBMEbeta=example$Est$mean Y=as.data.frame(cbind(Y_direct,Y_HBMEbeta)) summary(Y) ``` ### Comparing Mean Squared Error (MSE) ```{r} MSE=as.data.frame(cbind(MSE_direct,MSE_HBMEbeta)) summary(MSE) ``` ### Comparing Relative Standard Error (RSE) ```{r} RSE=as.data.frame(cbind(RSE_direct,RSE_HBMEbeta)) summary(RSE) ``` ## case 2: Auxiliary variables contains variable with error and without error ## Fitting HB Model ```{r} example_mix <- meHBbeta(Y~x1+x2+x3, var.x = c("v.x1","v.x2"), iter.update = 3, iter.mcmc = 10000, thin = 3, burn.in = 1000, data = dataHBMEbeta) ``` ## Ekstract Mean Estimation ### Small Area Mean Estimation ```{r} example_mix$Est ``` ### Coefficient Estimation ```{r} example_mix$coefficient ``` ### Random Effect Variance Estimation ```{r} example_mix$refvar ``` ### Extract MSE ```{r} MSE_HBMEbeta_mix=example_mix$Est$sd^2 ``` ### Extract RSE ```{r} RSE_HBMEbeta_mix=sqrt(MSE_HBMEbeta_mix)/example_mix$Est$mean*100 ``` ## You can compare with Direct Estimation ### Comparing Y ```{r} Y_HBMEbeta_mix=example_mix$Est$mean Y_mix=as.data.frame(cbind(Y_direct,Y_HBMEbeta_mix)) summary(Y) ``` ### Comparing Mean Squared Error (MSE) ```{r} MSE_mix=as.data.frame(cbind(MSE_direct,MSE_HBMEbeta_mix)) summary(MSE_mix) ``` ### Comparing Relative Standard Error (RSE) ```{r} RSE_mix=as.data.frame(cbind(RSE_direct,RSE_HBMEbeta_mix)) summary(RSE_mix) ``` ###### note : you can use dataHBMEbetaNS for using dataset with non-sampled area